

SCHEMATIC PRECAST SYSTEM

www.sps-patent.com

The Systematic and Multipurpose Precast Concrete Panel For Different Types of Construction Projects

SPS:

- A SYSTEMATIC SOLUTION FOR A MEDIUM UNTIL LARGE CONSTRUCTION WORK AND / OR CONSTRUCTION WORK WITH A HIGH NATURE DIFFICULTIES LEVEL
- IN THE LAST 2 YEARS REQUESTED TO DEVISE SOME FUTURE STRATEGIC PROJECTS IN SEVERAL COUNTRIES LIKE ENGLAND, AUSTRALIA, FIJI, MALAYSIA AND UAE
- SPS IS PURE THE FINDINGS RESULT FROM INDONESIAN WITH 70% DOMESTICS STATE LEVEL
- HAS BEEN REGISTERED COPYRIGHTS, PATENT RIGHTS, INTELLECTUAL PROPERTY RIGHTS (HKI), AND INTELLECTUAL PROPERTY RIGHTS FROM KEMENKUMHAM RI
- HAVE INTERNATIONAL LICENSING AGREEMENT FOR USA, CANADA, CARIBBEAN ISLANDS, MEXICO, CENTRAL AMERICA, SOUTH AMERICA, AUSTRALIA, NEW ZEALAND AND OCEANIA REGION (FIJI, PAPUA NEW GUINEA, SOLOMON ISLANDS ETC.)
- REGISTERED PATENT HOLDER :

I Nym Gede Anggara M

COPYRIGHTS:

PATENT RIGHTS:

- Hak Cipta J002016015701

No. IDP00004<mark>7527</mark>

- Hak Cipta D002016015703

No. IDP000047605 No. IDP000048405

INTELLECTUAL PROPERTY RIGHTS:

No. IDP000073456

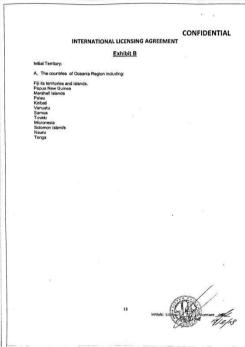
- HKI, 3-HI, 05, 07 194

No. IDP000071499

- HKI, 3-HI, 05, 07 195

No. IDP000073588

- HKI. 3-HI. 05. 07 196


SPS Panel Standards

International Licenses

CONFIDENTIAL INTERNATIONAL LICENSING AGREEMENT

Exhibit B

Initial Territory:

- A. Portions of North America as described below:
 - UNITED STATES OF AMERICA (USA) the contiguous 48 States, including Hawaii and Alaska. And the 16 US territories identified below, that are administered as insular areas by the US.
 - American Samoa
 - Guam
 - Northern Mariana Islands
 - . U.S. Virgin Islands
 - Minor Outlying Island:
 - Bajo Nuevo Bank
 - Baker Island
 Howland Island
 - Jarvis Island
 - Johnston Atoll
 Kingman Reef
 - Midway Islands
 Navassa Island
 - Navassa Islan
 Palmyra Atoli
 - Palmyra Atoli
 - Serranilla Ban
 - Wake Island
- ii. CANADA its 10 provinces and 3 territories.
- B. CARIBBEAN ISLANDS as identified below.

Antigua and Barbuda Barba
Oominican Republic Guace
Saint Barthelemy Saint
Haiti Jama
Curacao Caraba
Saint Ritts and Nevis Saint
Montaerrait Saint
Trinidad and Tobago Britisi
Turks
Tu

Barbados Quadeloupe (and dependencies)
Saint Martin
Jamaica
Jamaica
Caribbean Netherlands
Saint Lucia
Anguila

Initials: License A Total

CONFIDENTIAL INTERNATIONAL LICENSING AGREEMENT

Exhibit B

Effective July 2, 2018

Additional Territory

Additional Territory:

C. Additional portions of North America as described below:

i, MEXICO (United Mexican States) - its 31 States and the one Federal District.

ii. CENTRAL AMERICA - the 7 counties as identified below:

Belize Costa Rica El Salvador Guatemala Honduras

Also, included with the above 7 countries are the associated many small offshore islands and cayes.

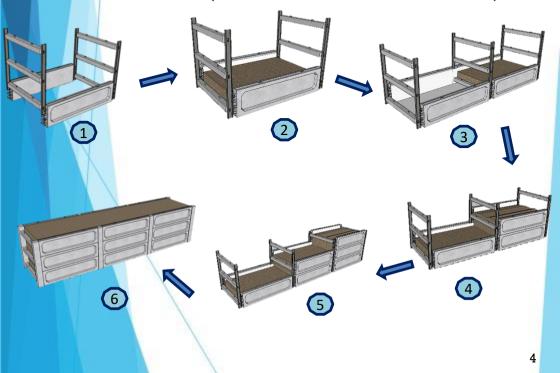
D. SOUTH AMERICA (the continent in the Western Hernisphere, mostly in the Southern

Argentina Bolivia Brazil Chile Colombia Ecuador Guyana Paraguay Peru

Also, included are the Falkland Islands/South George Islands/South Sandwich Islands (United Kingdom) & French Guiana (France). And offshore Islands associated with the countries of Argentina, Brazil, Chile, Colombia, Ecuador, Guyana, Peru, Suriname, Uniquia X Venezuela.

NOTE: Licensee affirms that all business dealings/commerce and relationships established within the Territories identified, under this "Exhibit," are subject to and will comply with the laws and regulations of the U.S. (USA) Government.

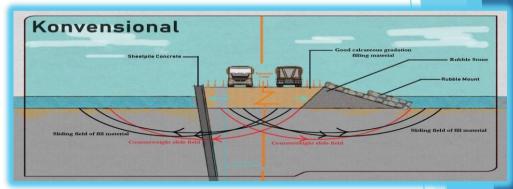
initials: Licensor / Licensee / Licensee / Julie 9.200 11 41 2 200


^

MAIN COMPONENTS

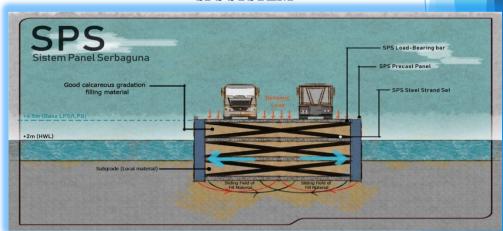
SPS DESIGN (3D CONSTRUCTION SEQUENCE)

SPS CONSTRUCTION & INSTALLATION



SPS Technical Excellences SPS does not need any piles SPS is manufactured according to quality standards SPS is easy to construct, vertical or horizontal SPS can be filled with a mixture of local materials, sand or stone SPS Serves as a counterweight SPS is monolith (Large strength to weight ratio) dynamic load resistant, has denser controlled geometry and structural alignment- if there is a decrease it will be evenly distributed SPS can accept the flow of water beyond the height of the structure (overtopping) SPS is more effective and efficient in land use and demand SPS has high aesthetics and appearance can be customized as needed SPS has a long life span - minimum maintenance cost SPS is multifunctional for various types of construction works

CONCEPT ILUSTRATION: FIELD OF SHEAR AND LATERALMOVEMENT


CONVENTIONAL STRUCTURE

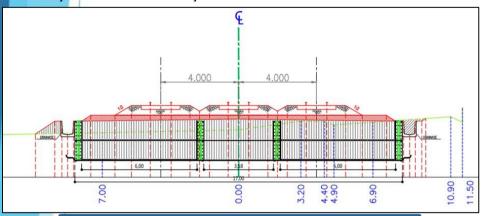
Dynamic Load effect:

- → The Density of Filling Soil Reduced
- → The Density of Counterweight Reduced
- → Unbound makes it vulnerable to movement

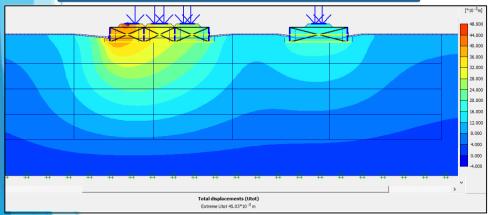
SPS SYSTEM

Dynamic Load Effect:

- → The density of Filling Soil remains
- → The density of Counterweight remains
- → Confined effect on SPS: fill material is densely held

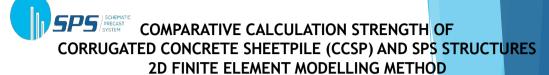


DSTRENGTH CALCULATION OF SPS METHOD OF FINITE ELEMENT 2D MODELING


>CASE STUDY: Elevation of The Railway Track

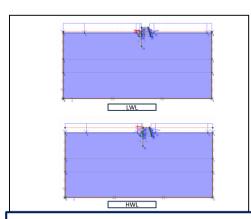
Scope of Work:

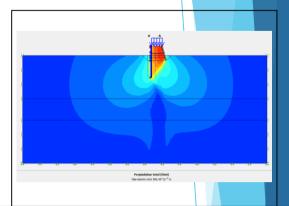
- Safety Factor Analysis (SF) Excavation Field
- Analysis of forces received by the soil around the installation



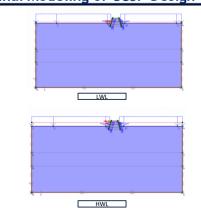
Single Track and Multiple Track Final Modeling

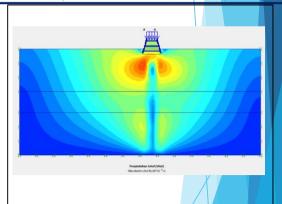
Modeling Conclusions


- Acquisition of Safety Factor (SF) for each stage of SPS construction work (acquisition of SF Purpose => 1.7 ~ 2)
- Acquisition of the displacement magnitude (vertical and horizontal)
 as well as the estimated settlement / total displacement due to
 static load and dynamic load applied on the surface of the SPS
 System.
- Obtaining Safety and Earthquake Resistance in Construction



➤ CASE STUDY: Construction North Coast of Java's Sea Wall


Scope of Work:


Analysis of Safety Factor (SF) and Deformation of Excavated and Construction
Fields in LWL and HWL conditions

Final Modeling of CCSP Design Construction: Deformation 590 mm SF= 1,329

Final Modeling of SPS Design Construction: Deformation 80.1 mm SF= 1.863

Modeling Conclusions

- The obtained Safety Factor (SF) for each stage of SPS construction work (obtained SF Goal=> 1.8~2) this value is greater than the Safety Factor (SF) for CCSP construction (obtained SF Goal=> 1.3~1.5).
- Obtain displacement quantities (vertical and horizontal) as well as estimates of settlement/total displacement due to static load (self-load) and dynamic load that apply on the surface of the SPS and CCSP systems.
- The following is a video link for the sea wall concept with SPS: https://youtu.be/K2XuuQ3D5Cs

ASSESMENT RESULTS OF THE RETAINING WALL SOLUTION SPS vs CONVENTIONAL RETAINING WALL

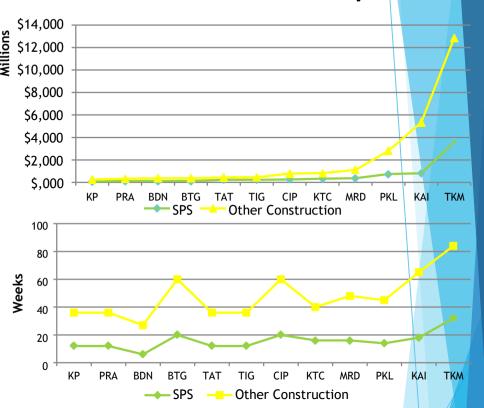
No.	Constr uction Type	Constru ction Cost	Executi on Time	Workabil ity	Soil Beari ng Capa city	Qualit y and Geom etry	Constru ction Power & Capabili ty	Land Area Require d	Use of Tools	Energy Absorption	Mater ial Conte	Social Impa ct	SCOR E TOT AL
1	SPS	5	5	4	5	5	5	4	3	3	4	5	48
2	Concre te Sheet Pile	1	3	4	3	5	4	4	2	3	5	4	38
3	Retaini ng Wall	2	2	3	2	4	4	4	3	3	5	4	36
4	River Stone Pair	4	2	3	1	3	2	3	4	4	4	3	33
5	Gabion Pair	4	3	4	2	2	1	3	3	4	4	1	31
6	Barrow	5	5	5	4	1	1	2	2	2	1	2	30

ASSESSMENT IS DONE BY: CONSTRUCTION MANAGEMENT TEAM UNIV. UDAYANA BALI (2014)

* * Scoring point

1. Very bad

4. Good

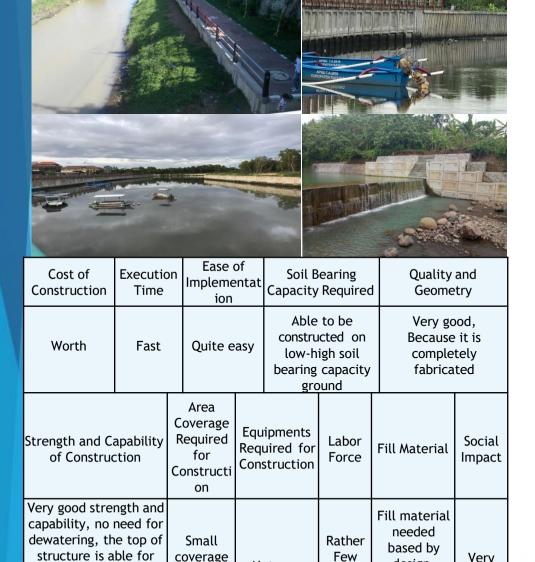

5. Very Good

Bad
 Enough

* Note: The above assessment results are an assessment of small-scale work, so when taken into account on a larger scale / long term (eg 25 years or more) covering time and costs (impact of routine, reworking, social and environmental maintenance), the utilization of SPS will be much better and very profitable

Comparison of Financing Values & Project Construction Time SPS vs Other Construction System

Note:


- The table is based on real data from projects that have been done using SPS construction.
- 2. Preparation of data is made in such a way from the project with the smallest financing value to the largest.
- 3. Comparative construction is the conventional construction with the lowest financing value.

Conclusion:

- Application of SPS construction will be highly efficient when applied to large projects / projects with large financing value, both time and cost efficiency.
- 2. The efficiency obtained will be smaller, if the SPS construction is applied to a small project, it is not impossible that SPS will not be efficient if the sps is applied to a very small scale project.

SPS (SCHEMATIC PRECAST SYSTEM)

Not many

Employ

ment

coverage

area

(efficient)

utilization (e.g.

mobilization track)

after the structure is

perfectly constructed.

Very

low

design,

utilization of

fill material

are efficient.

CONCRETE SHEET PILES

Cost of Construction	Execution	Ease of	Soil Bearing	Quality and
	Time	Implementation	Capacity Required	Geometry
Expensive	Rather fast execution time	Quite easy, the work needed to be done carefully for good result.	bearing capacity	Very good, strong and stable structure.

Strength and Capability of Construction		Equipments Required for Construction		Fill Material	Social Impact
Good strength and capability, no need for dewatering, but top of structure cannot be used for activity (needed additional construction to stabilize sheet piles if planned to build road)	Small coverage area (efficient)	Quite many	Rather huge employ- ment	-	Low

CONCRETE RETAINING WALL

Cost of Construction	Execution Time	Ease of Implementation	Soil Bearing Capacity Required	Quality and Geometry
Expensive	Need a Long time	Quite Easy	Need good soil bearing capacity	Stable and sturdy construction, small seepage

Strength and Capability of Construction		Equipments Required for Construction	Labor Force	Fill Material	Social Impact
Construction on swamp areas is difficult (need dewatering), the top of the construction can not be used directly for the activity.	Small area	Quite little	Pretty much	No Need	Low

DIVERSE APPLICATIONS OF SPS

Soil Improvement

Retaining Wall

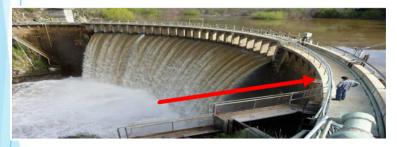
Dam

Retaining The River Wall

Road Infrastructure

The base of the railway

Coastal Protection

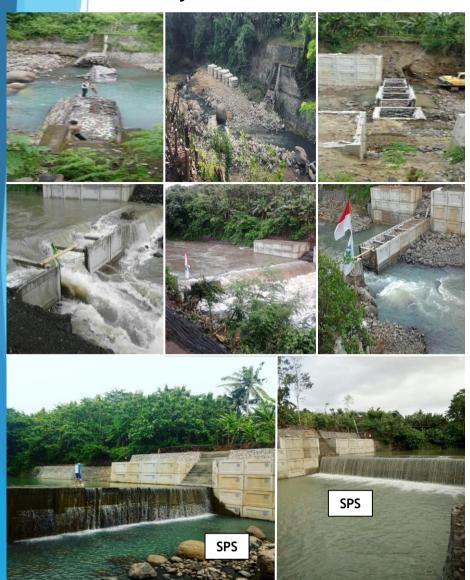

Jetty & Harbour

DIVERSE APPLICATIONS OF SPS

The base of the bridge

Dams / Reservoirs

Coastal Reclamation


DIVERSE APPLICATIONS OF SPS

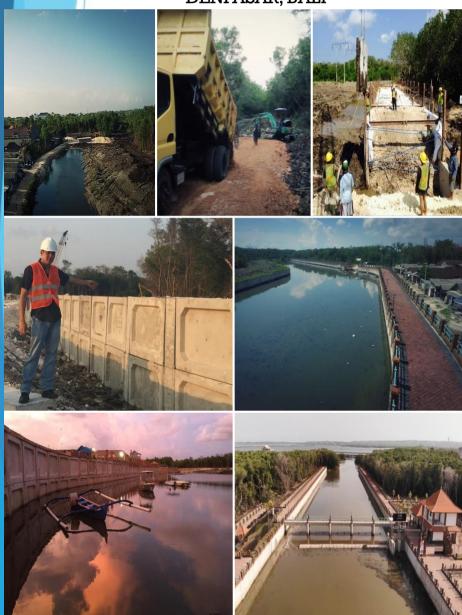
Irrigation Channels

CEKDAM RIVER – TUKAD AYA TIMUR, JEMBRANA, BALI

SPS ATTACHED PERFECTLY

CEKDAM 6 WANGGU RIVER PROJECT KENDARI, SOUTHEAST SULAWESI

FLOOD AND TIDAL FLOOD CONTROL PROJECT – SERINGIN RIVER, SEMARANG



FLOOD CONTROL AND RIVER NORMALIZATION - TUKAD MATI DENPASAR, BALI

FLOOD CONTROL TUKAD UNDA KLUNGKUNG, BALI

REHABILITATION PENCENG RIVER DEMAK, CENTRAL JAVA


REHABILITATION MENYONG RIVER DEMAK, CENTRAL JAVA

TIDAL FLOOD COUNTERMEASURES BANDENGAN, PEKALONGAN, CENTRAL JAVA

BEDONO – SURODADI ROAD CONSTRUCTION AND ALSO AS THE COASTAL BELT AT ONCE BEDONO, DEMAK, CENTRAL JAVA

RECLAMATION AND REVETMENT BITUNG, NORTH SULAWESI

SPS CONSTRUCTION COASTAL RECLAMATION AND JETTY MARUNDA, JAKARTA

INSPECTION ROAD CONSTRUCTION, HANDLING CONSTRUCTION, AND RIVER RAILWAYING CIPATUNJANG, KARAWANG, WEST JAVA

SPS GROUNDSILL CONSTRUCTION GLAGAH RIVER, CENTRAL JAVA

SPS STRUCTURE RETAINING WALL (WITH JOGGING TRACK) AND RIVER RAILWAYING AT TUKAD IJO GADING, NEGARA

RETAINING WALL AND SOLID STYLING MULTI-TRAP SPS METHOD SINGARAJA, BALI

RETAINING WALL PURA TUNGGUL BESI KARANGASEM, BALI

BANDUNGSARI – SALEM ROAD REHABILITATION POST-LANDSLIDE HANDLING BREBES, CENTRAL JAVA

THE CONSTRUCTION OF THE PURWOSARI MOSQUE EXIT TO SAYUNG HIGHWAY, DEMAK, CENTRAL JAVA

REACTIVITY OF THE RAILWAY ROAD TAWANG STATION – TANJUNG MAS PORT SEMARANG, CENTRALJAVA

FLOOD CONTROL SEPAKU RIVER NEW CAPITAL CITY OF INDONESIA

RESERVOIR MARUNDA PART 1 & 2 NORTH JAKARTA, DKI JAKARTA

SPS Construction Video Link in Youtube

•	SPS Construction System Review	https://youtu.be/F7pM9EpqxUE
•	SPS Tidal Flood Countermeasures	https://youtu.be/E688rrdOJQk
•	SPS Land Reclamation and Jetty	https://youtu.be/T3DJtOE6-24
•	SPS Coastal Erosion Protection	https://youtu.be/K2XuuQ3D5Cs
•	SPS Beach Nourishment	https://youtu.be/FbsWZFKDJmE
•	SPS Tukad Mati Indonesia	https://youtu.be/pHPnv3wa_cs
•	SPS Riverdam Construction	https://youtu.be/AzfynwsQXy4
•	SPS Toll Road and Train Rail	https://youtu.be/ZBRpLe3jw0M
•	SPS Landslide Protection	https://youtu.be/urVDfPe8-RM
•	SPS Soil Improvement for Railways	https://youtu.be/dVbLtTYmjMc
•	SPS Marine and Breakwater	https://youtu.be/yN4nM9VH1hw
•	SPS Cekdam Tukad Aya Timur	https://youtu.be/8fi0rpkhCH0
	SPS Embung Kemirigede	https://youtu.be/tkNoMHiOvy4

Subscribe to our SPS Patent Youtube Channel!

MAIN ADVANTAGES

FASTER BUILDS

MORE DURABLE

CONTACT

SPS PATENT COORDINATOR

Ella

Mobile : +62 822-4435-8899 Email : ella@sps-patent.com www.sps-patent.com

Changing The World We Live in

